
101-1 

A New MPS Simulation Algorithm Based on Gibbs Sampling 
 

Steven Lyster1, Clayton V. Deutsch1, and Thies Dose2 

 
1Centre for Computational Geostatistics – Edmonton, Alberta 

2RWE Dea Aktiengsellschaft – Hamburg, Germany 

The major heterogeneity in most reservoirs and deposits is often characterized by facies or rock 
types.  Petrophysical properties are modeled within each facies or rock type.  Multiple-point 
geostatistical methods are being used increasingly to reproduce curvilinear geologic features.  A 
number of multiple-point simulation methods have been put forward in the past; this paper 
proposes a novel implementation using a Gibbs sampler algorithm.  This algorithm uses the 
concept of multiple-point events in an effort to account for high-order structure in the presence of 
arrangements of facies which are inconsistent with the statistics inferred from the training image. 

Introduction 

Multiple-point statistics (MPS) methods are used to model geologic phenomena in more realistic 
and robust ways than traditional geostatistics.  Rather than considering linear estimates based on 
individual conditioning points, MPS use several points simultaneously to determine conditional 
probabilities.  These higher-order relations more accurately describe complex features than the 
standard Gaussian model of spatial structure. 

Several methods for reproducing MPS have been explored previously: the single normal equation 
(SNE) approach first proposed by Guardiano and Srivastava (1993) and further expanded by 
Strebelle and Journel (2000, 2001); simulated annealing (Deutsch, 1992; Lyster et al, 2004a); 
Gibbs sampling (Srivastava, 1992); a neural network iterative scheme (Caers and Journel, 1998; 
Caers, 2001); and integration of runs with indicator simulation for reproduction of higher-order 
relations in continuous data (Ortiz, 2003). 

MPS methods have primarily focused on categorical indicators and modeling rock types; this is 
probably due to the relative ease with which training images may be created for geologic 
structures, as opposed to the dense sampling necessary to infer high-order moments for 
continuous data. Within the family of categorical methods, most use iterative approaches to 
reproduce MPS. This is likely because of the relative reduction in dimensionality of the statistics 
that must be calculated and stored when using a template in an iterative method, instead of having 
to characterize the many combinations of both points and facies needed for a sequential method. 

The approach proposed in this paper is similar to several of the above-mentioned methods in that 
it is an iterative simulation algorithm meant to be used for modeling of geologic facies or rock 
types. While a Gibbs sampler method has been investigated before, a novel technique for 
determining the conditional probabilities will be presented. Several updating schemes to enforce 
proper univariate statistical reproduction and locally varying proportions will also be discussed. 
Two examples using complex training images and comparing two-point with MPS simulation 
results will be shown. A comparison of the proposed algorithm with several other MPS 
simulation methods will also be undertaken; the training image for this comparison is a three-
dimensional model of a fluvial petroleum reservoir. 
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Gibbs Sampler 

The Gibbs sampler is a statistical algorithm that was first proposed by Geman and Geman (1984); 
it is a special case of the Metropolis algorithm (Metropolis et al, 1953). It is a method used for 
drawing samples from complicated joint or marginal distributions, without requiring the density 
functions of the distributions (Casella and George, 1992). In the context of geological modeling, a 
sample from the joint distribution is a simulated realization. In a Gibbs sampler only the 
conditional distributions are required to sample from the joint distribution, which is why this 
approach is attractive as a MPS simulation method; all necessary conditional probabilities may be 
determined from a training image. 

The basic idea of a Gibbs sampler is that of resampling individual variables conditional to others 
in the same sample space. Drawing new values conditional to all others, and repeating this 
process many times, results in an approximation of the joint (and marginal) distribution(s). For 
example, to determine the density function for f(X,Y,Z), one would start with an initial state 
(values) for X, Y, and Z and then sequentially draw values from the conditional distributions 
f(X|Y,Z), f(Y|X,Z), and f(Z|X,Y). When a number of conditional values have been drawn, the state 
of (X,Y,Z) approximates a sample from the joint distribution f(X,Y,Z). Repeating this process 
enough times allows the density (or histogram) of the joint distribution to be constructed 
empirically. In geostatistics generating many samples from the joint distribution is analogous to 
creating many simulated realizations. 

The Gibbs sampler is a Markov chain Monte Carlo (MCMC) method (Gelfand and Smith, 1990), 
meaning that each new value drawn from a conditional distribution is assumed to be dependent 
only on the current state of the variables. While theoretically the new value should be dependent 
on all prior states, because the current state is dependent on the previous state and the previous 
dependent on the one before that; thus, using only the current state to determine the new value 
drawn accounts for all earlier states and therefore the theory may be simplified to ignore all past 
states and use only the current. This property is known as conditional independence, and allows 
the use of a MCMC method in a geoscience application to be greatly simplified. 

An advantage of the Gibbs sampler workflow for geospatial modeling is that there is no strict 
specification for how the conditional distributions need to be determined. Previous use of the 
Gibbs sampler (Srivastava, 1992) focused primarily on using kriging and two-point statistics; a 
single normal equation using MPS was also explored briefly. Besides a MPS template, it would 
be possible to integrate any desired statistics into the conditionals, such as locally varying means, 
secondary data, and lower-order statistics to ensure their proper reproduction. The results of the 
simulation will be dependent on the selection of the conditional distribution chosen. 

Estimation of Conditional Probabilities 

To find the conditional probabilities of facies at a point, any desired method could be used. 
However, the quality of the resulting realizations will be determined by the conditional 
probabilities selected. For example, using only the univariate histogram as a conditional 
distribution would guarantee that the facies proportions are matched exactly, but would not give 
any structure in the results; using the variograms and kriging to determine conditional 
probabilities would reproduce the direct covariance structure but nothing more; adding the cross-
variograms in a licit LMC would reproduce the relations between facies as well. The use of MPS 
should hopefully reproduce higher-order statistics in the end results. 



101-3 

The most basic method of using MPS in the conditional distributions for a Gibbs sampler would 
be to use Bayes’ Law to directly infer the probabilities of each facies directly from the training 
image. An example of a problem in using this approach is illustrated in Figure 1. The central 
point in the given MPS template, and therefore the point for which the conditional probabilities 
are needed, is marked with an “X”. Suppose facies at the two points, marked with dots, next to 
the central location are a mismatch for the training image; such a mismatch occurs often when 
beginning with an initial image which does not honour MPS. The standard procedure would be to 
drop the farthest away point from the central location, and recalculate the conditional 
distributions. However, because the mismatch occurs so close to the central point, most of the 
points in the template would need to be dropped in order for the conditional probabilities to be 
inferred from the training image. 

 
Figure 1:  Possible MPS template. 

Dividing the template into several separate sub-templates is the proposed solution to this problem. 
Rather than considering the surrounding points around the location of interest as a single event, 
dividing the template into M discrete multiple point events (MPEs) can allow high-order statistics 
to be used while preserving the two-point geostatistical concept of accounting for the closeness 
and redundancy of separate data. 

With this approach, the estimated conditional probability of facies k at the location of interest 
may be expressed as: 
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where ( )kP*  is the estimated probability of facies k at the current point;  k
iλ  is the weight given 

to MPE i for the probability of k; iE  is one of the MPEs near the current point; ( )iEI  is the 
indicator of the MPE; it is 1 for all events considered;  ( )iEP  is the global probability of Ei, also 
denoted as fj; and ( )kP  is the global probability of k, also denoted as Pk. 

Equation 1 is a linear estimate, but uses indicators of MPEs as data instead of single-point 
indicators. Because each of the M events has N points, there are theoretically KN data classes for 
every MPE; using only those events that actually occur around the location of interest reduces the 
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size of the linear estimate from MKN terms to M. This reduction in dimensionality should not 
have a significant impact, as the weights for such a very large linear estimate would be relatively 
small and the global probabilities of MPEs also quite small; therefore, those MPEs whose 
indicators are 1 should have by far the greatest impact on the estimated conditional probabilities. 

Minimizing the variance of the estimated conditional probabilities given in Equation 1 leads to: 
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To continue with the derivation it becomes necessary to define the covariance between MPEs: 
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Substituting Equation 3 into Equation 2, 
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And now taking the derivative and setting it equal to zero, 
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Equation 5 is exactly the same as the standard simple kriging system of equations, with MPEs as 
data. Because training images are used in MPS all necessary covariances, even those involving 
complex MPEs, may be easily inferred. 

To justify the use of the proposed approach utilizing MPEs, several checks may be made. Firstly, 
if each event considered consists of a single point then the estimate in Equation 1, the covariance 
in Equation 3, and the kriging system in Equation 5 all become the standard equations used in 
traditional two-point geostatistics. This suggests that the theory behind MPEs is sound, and is a 
more general form of traditional indicator geostatistics. 

The second check for the validity of the proposed method is to use only a single event of N 
points. In this case, solving for the optimal weight in Equation 5 yields 
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Substituting this result into Equation 1, the estimated conditional probabilities are then 
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And since the indicator of the event occurring is always 1, this simplifies to 
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Equation 7 is Bayes’ Law, which is exactly the result that should be expected when using a single 
event as data for determining conditional probabilities. 

Modifications to Conditional Probabilities 

In addition to the MPE approach for estimating the conditional probabilities, other factors may be 
considered as required. As mentioned previously there are no strict requirements for the 
conditional probabilities used in a Gibbs sampler; there is only the practical result that better 
selection of the conditional distributions will yield more accurate estimates of the joint 
distribution and hence higher-quality realizations. 

Keeping with this idea, adjustments to the estimated conditional probabilities may be made to 
help ensure the global target statistics are honoured. The first modification is to help reproduce 
the global univariate proportions, which are often considered very important. To guide the global 
proportions towards those desired, a servosystem is employed in the new algorithm (Strebelle and 
Journel, 2001). The servosystem modifies the estimated conditional probabilities as follows: 

 ( ) ( ) ( ) ( )kPkPkPkP C−+=′ *  (8) 

where ( )kP′  is the modified conditional probability of facies k; ( )kP*  is the estimated 
probability of facies k found with Equation 1; ( )kP  is the global probability of facies k; and 

( )kPC  is the proportion of facies k in the current realization field 

This modification leads to the facies which are underrepresented being gradually introduced more 
often and those which occur too often being subtly decreased. While the servosystem in Equation 
8 is unlikely to drastically affect the conditional probabilities, it will prevent the univariate 
proportions from deviating too far from those desired. 

In addition to the servosystem modification, an additional updating scheme is needed to honour 
locally varying proportions of facies. While local proportions could be inserted directly into 
Equation 8, the decision was made to use a Bayesian updating scheme (Deutsch, 2002) instead. 
This is an arbitrary decision and could be easily modified in the future. The Bayesian updating 
scheme for local proportions is as follows: 

 ( ) ( ) ( )
( )kP

kPkPkP
L

×′=′′  (9) 

where ( )kP ′′  is the updated conditional probability of facies k; and ( )kP L  is the local probability 
of facies k. 
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Using Bayesian updating as in Equation 9 should have a greater impact on the conditional 
probabilities of facies with low global proportions than an additive servosystem. For example, if a 
facies has a global Pk = 0.1 and the local Pk = 0.2, an additive modification would add 0.1 to the 
estimated conditional probability; this may not be significant enough to overcome the global 
proportion term in Equation 1. Multiplying as in Equation 9 would double the estimated 
probability for this facies, which should have a greater effect. 

Alternatively to the updating methods suggested here, a purely multiplicative approach could be 
used; this would result in the estimated conditional probabilities being multiplied by the local 
probabilities over the current realization proportions. This method was found to not be strict 
enough in matching the desired global proportions; as a facies is eroded away from the realization 
its probabilities become correspondingly lower, and multiplying a very low probability by some 
factor still results in a low probability. A purely additive approach was also explored, but was 
found to not honour the local means for those facies which have low global proportions. The 
proposed method is suggested as a compromise between the two alternatives. 

Proposed Algorithm 

Using the concepts discussed above, the proposed workflow for the new MPS simulation method 
is as follows: 

1. Scan the training image and calculate all of the necessary statistics.  Selection of the 
training image will not be discussed here. The number of MPEs to be used, M, and the 
points per event, N, must be selected carefully. Using more events will account for more 
of the surrounding information, but will also slow the algorithm down and put less weight 
on those events which are truly important. Too many points in each event will result in 
the statistics not being well enough informed from the training image; too few will not 
fully characterize complex features. Experimentation with the method has typically 
yielded the best results with M ranging from 4 to 12 and N of 4 to 8. The actual values 
used depend on the size and complexity of the training image, the number of facies being 
simulated, and the desired size and number of realizations. 

2. Read in the initial image. The image itself should honour some of the desired features or 
statistics, such as the variogram; this speeds up the algorithm significantly and also 
improves the final results. If a random image is used there is likely to be very little useful 
information contained in the MPEs at each location, and therefore convergence to a 
sample from the joint distribution (ie, a realization) will be quite slow. 

3. Develop a random path, spiraling away from the conditioning data. The data locations 
will not be visited, and therefore the data will be explicitly honoured. Spiraling away 
from the data should aid in the reproduction of conditioning information without 
discontinuities. 

4. Follow the path, drawing new values. Estimate the conditional probabilities with 
Equation 1 and update with Equations 8 and 9. Draw a new facies value at each location 
from the updated conditional distribution. This is the Gibbs sampler part of the algorithm. 

Drawing random values at every location has been found to often leave random noise and 
discontinuities in the resulting realizations, even though the overall structure is 
reproduced. Therefore, a version of maximum a-posteriori selection (MAPS) (Deutsch, 
1998) has been implemented in the final loop of each realization to “clean up” the image. 
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MPS are still used to determine the conditional probabilities, however. The only 
modification to the estimation of the conditional distribution is the omission of the global 
mean values P(k) in Equation 1; working only with residuals, the updating is performed 
with Equations 8 and 9, then the facies with the maximum probability is selected. This 
results in the image being cleaned quite well without discarding many of the MPS 
honoured. 

5. Finish the realization. After some number of loops over all locations (including the final 
MAPS loop), write out the results and repeat from step 2 for as many realizations as are 
desired. The number of loops is also a modeling choice which must be made for each 
individual case. 

Example 1 – Channel Training Image, Two Facies 

Shown at the top of Figure 2 is a two-dimensional training image with two facies: channel and 
non-channel. The image is 256 pixels square for a total of 65,536 cells. The channel structures 
seen in the training image have sinuosity and curvilinearity that is not possible to capture using 
two-point statistics. In the lower left of Figure 2 are two realizations created using sequential 
indicator simulation with the covariance calculated directly from the training image. While some 
of the general shape of the features is reproduced, such as the long east-west continuity and 
diagonal connectivity, in general there is very little reproduction of actual channels and potential 
flow paths are not seen in the realizations. 

The lower right of Figure 2 shows two realizations produced with the proposed Gibbs sampler 
algorithm. Ten MPEs of six points each were used for determining the conditional probabilities; 
the two-point simulations shown on the left were used as initial images; and ten loops were 
performed including a single MAPS cleaning loop at the end. Simulating ten realizations took 
8:13 using these parameters, including calculation of all relevant statistics. The computer used 
was a dual processor 3.2GHz PC with 3GB of RAM. Comparing these realizations to the SIS 
results, it is clear that the MPS enforce significantly more structure than two-point relations. 
Curvilinear bodies, long-range connectivity, and sinuosity in the channels are all evident. 

In the current implementation of the method, conditional probabilities cannot be determined for 
the facies values at the very edge of the grid. For now this problem is simply being ignored, and 
the initial values at the boundary of the realization are left in place unchanged; in Figure 2 this 
may be seen as edge effects. This decision does not appear to have had too significant of an 
impact on the results in the rest of the grid, but a better method for dealing with edge effects is 
desirable. 

Example 2 – Complex Training Image, Five Facies 

A complex training image with five facies and very complex relations between the different codes 
is shown at the top of Figure 3. The image is 200 pixels by 100 pixels, a total of 20,000 cells. The 
lower left of Figure 3 shows three realizations which were produced using all relevant two-point 
statistics derived directly from the training image, including all direct and cross covariances. 
While some of the structure was properly reproduced (in particular the green diagonal banding), 
and many of the relations between facies were honoured (blue/red are inside/on top of light blue), 
the realizations look very little like the training image.  
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Using the proposed Gibbs sampler, the realizations look much more like the training image; three 
realizations are shown in the lower right of Figure 3. Ten realizations were constructed by using 
ten MPEs of three points each; twelve loops were performed, with the final one using the MAPS 
cleaning; and the two-point realizations in Figure 3 were used as initial images. Smaller MPEs 
were used than for the first example because, with a smaller training image and five different 
facies, there was less information from which to infer even higher-order MPS. Simulating the ten 
realizations took 2:03 on the same machine as that used for the first example. The elliptical 
bodies are much more clearly reproduced by MPS than two-point statistics, and the relations with 
the red and blue facies may be seen more clearly.  

As seen previously, there are edge effects in the realizations in Figure 3. These artifacts once 
again appear to have little effect on the rest of the realization results. Considering the speed of the 
algorithm, it may be reasonable to consider simulating a larger grid than is needed and trimming 
the border. 

Comparison with Other Simulation Methods 

To analyze the potential of the proposed algorithm, a brief comparison study was performed. A 
complex three-dimensional training image with fluvial structures was used for the study; slices 
taken from this image are shown in Figure 4. The training image contains four facies: background 
floodplain (indicator code 0), levee sand (code 2), channel sand (code 4), and sheet flood sand 
(code 5). The image is 67 x 48 x 57 blocks in size, for a total of 183,312 blocks. 

Six different simulation methods were considered in this study: 

1. Full indicator cosimulation, with all covariances and cross covariances calculated directly 
from the training image. The program TISIS was used for this method (Lyster and 
Deutsch, 2006). 

2. Single normal equation simulation using MPS; the SNESIM program was used (Strebelle 
and Journel, 2000). 

3. Simulated annealing using 2x2x2 histograms of MPS as an objective function. This 
method used the MPASIM program (Lyster et al, 2004b). 

4. Simulated annealing, post-processing the results of traditional two-point simulation. 
Again, the MPASIM program was used. 

5. A “greedy” variant of simulated annealing, with the temperature set to zero; this case also 
used MPASIM. 

6. Simulation using the proposed Gibbs sampler algorithm, using MPEs to determine 
conditional probabilities. A new program, MPESIM, was written for this purpose. Four 
MPEs of five points each were used for the simulation. 

Ten realizations were created using each of the six methods listed above. The criteria used for the 
comparison were: time required for simulation, visual “goodness” of the realizations, 
reproduction of the target facies proportions in the training image, indicator variogram 
reproduction, error in the simulated MPS histograms, and distributions of multiple-point runs 
(Boisvert et al, 2006). 

Table 1 gives a summary of the computational time required for each of the algorithms. As 
expected, the two-point method was the fastest. The single normal equation simulation took by 
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far the longest time to perform ten simulations; this could be due to the time needed to build large 
search trees needed for the large template and four facies. The annealing simulations took less 
time than the normal equations approach, but still orders of magnitude more than the two-point 
indicator simulation. The proposed Gibbs sampler algorithm was much faster than the other MPS 
methods, and within an order of magnitude of the two-point simulation time. Though 
computational requirements are an important consideration, if a faster method produces worse 
results it may be less desirable despite this advantage.  

 
Method Time for 10 Realizations 

Full indicator cosimulation 1:55 
Single normal equations 17:03:07 

Multiple-point simulated annealing 3:06:02 
Post processing using MP SA 3:14:15 

Post processing using greedy criteria 1:53:38 
Gibbs sampler algorithm using MPEs 7:24 

Table 1: Time required for the six different simulation methods to produce ten realizations. 

Visual inspection of realizations is the easiest way to judge if a method is unacceptable, but this 
measure is very subjective. Figures 5 through 10 show slices of realizations produced by each of 
the methods. Visually, the two-point method (Figure 5) does not reproduce the channel structure 
at all, though the relations between channel and levee sand do appear somewhat correct. The 
single normal equation approach (Figure 6) does seem to reproduce the short-range structure, 
though long-range continuity is somewhat lacking. This is probably an implementation issue (not 
enough grids used for simulation). The annealing simulation (Figure 7) appears to be quite good 
in the cross sectional slices, though the curvilinear channel features are not seen in the aerial 
views. The post processing and greedy annealing approaches (Figures 8 and 9 respectively) 
appear similar to the unconstrained annealing approach, though with better reproduction of the 
levee sand features along the edges of the channel sand. In the Gibbs sampler results (Figure 10), 
the relations between the channel sand and levee sand facies are reproduced. The long-range 
channel structure is not seen in the aerial view; however, the Gibbs algorithm does appear to 
replicate the very long-range continuity of the flood plain facies better than any of the other 
methods. The edge effects seen previously were circumvented by simulating an additional three 
blocks on all sides of the field, then trimming these extra cells; this reduced, but did not 
completely remove, the effects of the unperturbed nodes. 

A more objective measure of a method is the reproduction of univariate statistics; in this case, the 
proportions of different facies. Figure 11 shows the univariate CDFs of each of the six methods 
along with the reference training image CDF (shown in red). A noticeable deviation from the 
target statistics are the annealing and annealing post-processing results significantly 
underrepresenting the flood plain facies in every realization, in favour of channel sand. Also 
notable is the systematic mismatch to the target proportions of the proposed Gibbs sampler 
algorithm. All of the facies are either over- or under-reproduced, with close to the same results in 
every realization. This suggests the servosystem approach in Equation 8 is not strong enough to 
ensure reproduction of the target univariate statistics. 

Figures 12 through 15 show the indicator variograms for the four facies, for all six simulation 
methods considered as well as the reference training image variograms. Surprisingly, the two-
point simulation did not reproduce the variograms well at all; this is probably due to the excessive 
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randomness caused by large kriging matrices. The different flavours of annealing appear to best 
match the target variograms, which is surprising considering the small template used for the 
objective function. The very long-range horizontal continuity of the sheet flood facies was not 
reproduced by most of the methods; only the annealing and annealing post-processing methods 
came close to matching the variograms, and both of those methods were significantly skewed in 
the reproduction of the univariate proportion of the sheet flood. The proposed Gibbs sampler 
reproduced the structures of each variogram (with the exception of the sheet flood), but the sills 
are wrong due to the bias in the univariate proportions which was mentioned above. 

As the simulation methods being compared utilize MPS (with one exception), comparisons using 
multiple-point statistics are desirable. The MPS histograms, using 2x2x2 statistics, were 
compared to those calculated from the training image; the distributions of runs were also 
calculated and compared. The average error (deviation from reference) for the histograms and 
runs for each of the simulation methods is shown in Table 2, along with the rankings of each 
method. 

As should be expected, the two-point simulation performed the worst by far when measured by 
MPS criteria. The single normal equation algorithm performed better in runs than in the 
histogram measure, and was middle of the pack overall. The annealing methods performed very 
well, particularly in the histogram measure; however, the MPS histogram could be biased towards 
the annealing because a 2x2x2 statistic was used for both the objective function and the histogram 
error calculation. The proposed Gibbs sampler method lagged somewhat behind in both MPS 
measures, though the results are not bad enough to discourage further development of the 
algorithm. 

 
Method MPH Error Rank Runs Error Rank 

Full indicator cosimulation 0.990 6 0.563 6 
Single normal equations 0.586 5 0.169 3 

Multiple-point simulated annealing 0.256 3 0.120 2 
Post processing using MP SA 0.256 2 0.267 4 

Post processing using greedy criteria 0.247 1 0.068 1 
Gibbs sampler algorithm using MPEs 0.453 4 0.333 5 

Table 2: Comparisons of multiple-point statistics. Average deviations of multiple-point 
histograms and runs distributions from the training image are shown, as well as rankings of the 
different methods. 

Comparing the MPE Gibbs sampler methodology to other facies simulation techniques, there is 
certainly room for improvement. The proposed method did not produce the best results by any 
objective measure. However, given the great savings in time required for performing the 
simulation, future modifications to the algorithm could make it a very attractive possibility. 

Conclusions 

As a MPS simulation method, the proposed Gibbs sampler algorithm shows promise. Further 
refinement is needed to properly reproduce long-range features, to eliminate the edge effects, and 
to ensure conditioning data are honoured. Better reproduction of the desired MPS is also a goal, 
though this would likely be a side effect of the other improvements mentioned. 
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Long-range features may be introduced in the initial images, rather than in the algorithm itself. In 
general for iterative algorithms, better initial images will lead to better results. The edge effects 
could simply be trimmed, the border of the realizations could use a different method for selection 
of conditional probabilities, or the grid could be wrapped. All of these possibilities have their own 
positive and negative points. 

Honouring conditioning data is the most important implementation aspect that needs to be 
developed. The major weakness of many iterative methods is that hard data are explicitly 
honoured, but with a discontinuity. This problem can easily present itself in the proposed Gibbs 
sampler. Several steps may be taken to try and prevent this: ensure the initial images honour the 
conditioning data, use locally varying proportions of facies to reduce the likelihood of sudden 
discontinuities, or modify the conditional probabilities to explicitly account for nearby hard data. 

Overall improvement to the technique could be accomplished through greater sophistication. 
Hierarchical simulation of facies, integration of lower-order (but longer-range) statistics to the 
conditional probabilities, and other modifications are all possible because of the great speed of 
the algorithm; there is the possibility for improvements to be made, even if simulation proceeds 
slower because of it. 

Developments of these aspects, as well as other implementation issues, will need to be further 
researched. Any method needs to be quite robust before it can be accepted and used in 
quantification of uncertainty. The advantages of MPS over traditional two-point methods are 
offset by the extent to which kriging-based algorithms have been developed. Having a diverse 
range of techniques which utilize MPS is beneficial to the field as each method may have its own 
area in which the algorithm works best. Development of each idea will progress over time, and as 
problems are solved for one method the same solution may be applicable to others and the 
robustness of MPS will be increased. 
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Figure 2: Top: TI with two facies and channel features. Left: Realizations produced using two-
point statistics. Right: Realizations using the proposed Gibbs sampler algorithm. 
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Figure 3: Top: Complex TI with five facies. Left: Realizations using only covariances and cross-
covariances. Right: Realizations using the proposed Gibbs sampler algorithm. 
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Figure 4: Slices from the fluvial training image used in the comparison of simulation methods. 
Top left: X-Y; Top right: Y-Z; Bottom: X-Z. 
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Figure 5: Slices from a realization produced by full indicator cosimulation. Top left: X-Y; Top 
right: Y-Z; Bottom: X-Z. 
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Figure 6: Slices from a realization produced by multiple-point single normal equation simulation. 
Top left: X-Y; Top right: Y-Z; Bottom: X-Z. 
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Figure 7: Slices from a realization produced by multiple-point simulated annealing. Top left: X-
Y; Top right: Y-Z; Bottom: X-Z. 
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Figure 8: Slices from a realization produced by multiple-point simulated annealing, post 
processing realizations produced by full indicator cosimulation. Top left: X-Y; Top right: Y-Z; 
Bottom: X-Z. 
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Figure 9: Slices from a realization produced by multiple-point simulated annealing with 
temperature set to zero (ie, a greedy approach), post processing realizations produced by full 
indicator cosimulation. Top left: X-Y; Top right: Y-Z; Bottom: X-Z. 
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Figure 10: Slices from a realization produced by the Gibbs Sampler MPE approach, using 4 
statistics of 5 points each. Top left: X-Y; Top right: Y-Z; Bottom: X-Z. 
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Figure 11: Univariate CDFs for all realizations of each of the simulation methods compared. The 
reference TI CDF is shown in red. 
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Figure 12: Variogram reproduction for each method for facies 0 (background floodplain). The 
solid lines are the reference TI variograms; the dotted lines are realizations. Red is in the X 
direction, black is the Y direction, and blue is the Z direction. 



101-24 

  

  

  
Figure 13: Variogram reproduction for each method for facies 2 (levee sand). The solid lines are 
the reference TI variograms; the dotted lines are realizations. Red is in the X direction, black is 
the Y direction, and blue is the Z direction. 
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Figure 14: Variogram reproduction for each method for facies 4 (channel sand). The solid lines 
are the reference TI variograms; the dotted lines are realizations. Red is in the X direction, black 
is the Y direction, and blue is the Z direction. 
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Figure 15: Variogram reproduction for each method for facies 5 (sheet flood). The solid lines are 
the reference TI variograms; the dotted lines are realizations. Red is in the X direction, black is 
the Y direction, and blue is the Z direction. 


